10:27 PM A falcon with a golden wing |
সোনালি ডানার চিল: জীবন ও গণিতের আনন্দ বিষণ্ণ বিকেল এক
বিশাল মাঠে হিমেল বাতাসে একাকি উড়ছে নিঃসঙ্গ এক চিল, উড়তে উড়তে চলে গেছে বেশ উঁচুতে, তিলের কালচে দানার মতো দেখায় তার শরীর। হঠাৎ এক মুহূর্তের জন্য আকাশে স্থির হয় চিল, পর মুহূর্তে পাক খেতে খেতে তীব্র বেগে নামে সে, ভূমি স্পর্শ করার খানিক আগে খাড়া ঝাঁপ দিয়ে ছোঁ মারে—পায়ের নখরে উঠে আসে এক মেঠো ইঁদুর। "ইশশ, মেরে ফেলল তো ইঁদুরটাকে!” চিলের থাবা থেকে
হঠাৎ ছিটকে পড়ে মেঠো ইঁদুর, লুকিয়ে পড়ে খড়বিচালির ভেতর। উল্লাসে ফেটে পড়ে
ফারিন। ইঁদুরকে কিছুক্ষণ খুঁজে ফিরে লালচে ডানার চিল, তারপর চলে যায় উড়ে
উড়ে। শিকারি পাখি
চিল, বাজ কিংবা ঈগলের রয়েছে সুতীক্ষ্ণ দৃষ্টি, মানুষের চেয়েও কয়েক গুণ
বেশি। খাবারের সন্ধানে উড়তে উড়তে বেশ উঁচুতে উঠে যায় এরা, কখনো কখনো ৩-৪
কিলোমিটার, যাতে ভূমিতে অনেক জায়গা জুড়ে বিস্তৃত হয় এদের দৃষ্টি সীমা। আমরা মানুষেরা একদম স্থির হয়ে মাথা বা চোখ না নড়িয়ে জগতের যতটুকু জায়গা এক বারে দেখতে পারি, তা হচ্ছে আমাদের দৃষ্টিক্ষেত্র(field of vision)। এই দৃষ্টিক্ষেত্রের ডান প্রান্তের একটি অংশ কেবল ডান চোখই দেখতে পায়, বাম প্রান্তে অন্য একটি অংশ দেখে কেবল বাম চোখ, আর মাঝের বড় একটি অংশ দুই চোখই একসাথে দেখতে পায়। যে অংশটি দুই চোখই দেখে থাকে, তাকে বলা হয় দ্বিঅক্ষীয় (binocular) দৃষ্টিক্ষেত্র; প্রান্তের দিকে বাকি অংশ দু’টি হচ্ছে একাক্ষীয় (monocular) দৃষ্টিক্ষেত্র। ডানে ও বামে
মোটামুটিভাবে মোট ১৮০ ডিগ্রি পর্যন্ত বিস্তৃত আমাদের দৃষ্টিক্ষেত্র। খুব
সহজেই দৃষ্টিক্ষেত্র বের করার পরীক্ষাটি তুমি করতে পার। ঘরের মেঝেতে সোজা
দাঁড়িয়ে হাত দুটি টানটান করে কাঁধের পেছনে ছড়িয়ে দাও। তারপর নাক বরাবর
দেয়ালের একটি বিন্দুতে তোমার দুই চোখ নিবদ্ধ রেখে হাত দুটি আস্তে আস্তে
সামনে আনতে থাক। প্রথমে কোনো হাত চোখে পড়বে না তোমার, তবে কিছুক্ষণ পর, হাত
যখন কাঁধ বরাবর চলে আসবে, অস্পষ্টভাবে তোমার চোখে ধরা পড়বে সেগুলো। তার
মানে দুই হাত মিলে একটি সরল রেখা বা সরল কোণ (১৮০ ডিগ্রি) তৈরি করল। তবে বুঝতেই পারছ, দৃষ্টিসীমা বড় হলেও সব জায়গা আমরা ঝকঝকে
দেখতে পাই না। চোখের সামনে অল্প একটু জায়গা জুড়েই কেবল সুস্পষ্ট দেখি আমরা,
ডানে-বামে ঝাপসা হয়ে আসে আমাদের দৃষ্টি। দশম শতকের মহান বিজ্ঞানী ইবনে আল-হাতেম (Alhazen)
তাঁর যুগান্তকারী গ্রন্থ কিতাব আল-মানাজির (Book of
Optics)-এ প্রচুর পরীক্ষা-নিরীক্ষার মাধ্যমে দেখিয়ে গেছেন কীভাবে বস্তু
থেকে আলো এসে পড়ে আমাদের চোখের লেন্সে, তারপর সে আলো চোখের ভেতরে রেটিনা
নামক জায়গায় পৌঁছে তৈরি করে বস্তুর উল্টো প্রতিবিম্ব। চোখের স্নায়ুর
মাধ্যমে প্রতিবিম্বের তথ্য মুহূর্তে পৌঁছে যায় মস্তিষ্কে, আর মস্তিষ্ক সে
তথ্যের উপর কাজ করে আমাদের মনে সৃষ্টি করে সোজা বস্তুর অনুভূতি, ফলে
বস্তুটিকে আমরা সোজা দেখতে পাই। চোখের সাপেক্ষে বস্তুর বিভিন্ন অবস্থানের
ফলে আমরা কখনো একে দেখি ঝকঝকে, কখনো অস্পষ্ট। "কোনো কারণে চোখের স্নায়ুটি যদি নষ্ট হয়ে যায়, তাহলে কি
আমরা সবকিছু উল্টো দেখব, বাবা?” সারাকা প্রশ্ন করে। বিজ্ঞানীরা দেখেছেন, প্রতিটি চোখের রেটিনার মাঝামাঝি ক্ষুদ্র একটি গর্তের মতো জায়গায় যদি কোনো বস্তুর প্রতিবিম্ব পড়ে, তাহলে বস্তুটিকে আমরা সবচেয়ে ঝকঝকে দেখতে পাই; জায়গাটির নাম দিয়েছেন তাঁরা ফোবিয়াস সেন্ট্রালিস(foveas centralis)। এখন ফোবিয়াসে কোনো বস্তুর প্রতিবিম্ব ফেলতে চাইলে বস্তুটির দিকে আমাদের সোজাসুজি তাকাতে হবে, অর্থাৎ বস্তুটিকে আমাদের দ্বিঅক্ষীয় দৃষ্টিক্ষেত্রের ঠিক মাঝে রাখতে হবে। চিলের মতো শিকারি পাখিদের ক্ষেত্রে মজার ব্যাপার হচ্ছে, এদের প্রতিটি চোখে দুটি করে ফোবিয়াস সেন্ট্রালিস থাকে: একটি গভীর ফোবিয়াস সেন্ট্রালিস, অন্যটি অগভীর ফোবিয়াস সেন্ট্রালিস। দুই ফোবিয়াসই তীক্ষ্ণ ছবি গঠনে সাহায্য করে, তবে দ্বিতীয়টির তুলনায় প্রথমটির ছবি বহুগুণে স্পষ্ট। কাজেই অনেক উঁচুতে উঠে চিল যখন
কোনো শিকার খুঁজে পেয়ে তাকে টার্গেট করে, শিকারটিকে সে সব সময় তার গভীর
ফোবিয়াসের আওতায় রাখতে চায়। তাতে নামার সময় শিকারটি হঠাৎ হারিয়ে
ফেলার ভয় থাকে না। অদ্ভুত ব্যাপার হচ্ছে, চিলের গভীর ফোবিয়াস সেন্ট্রালিস
তার রেটিনার এমন জায়গায় গঠিত, যেখানে কোনো বস্তুর ছবি ফেলতে হলে, বস্তুটিকে
চিলের চোখের সোজা সামনে হলে চলবে না। বরং চিলের ঠোঁট বরাবর একটি সোজা রেখা
কল্পনা করলে, তার প্রায় ৪০ ডিগ্রি ডানে বা বামে বস্তুটির অবস্থান হতে হবে। আর এ জন্য চিল শিকারের দিকে সোজা সরলরেখায় না নেমে বক্রপথে
এমনভাবে নামে যেন তার মাথাটি সোজা থাকে কিন্তু চোখের গভীর ফোবিয়াসের দিক সব
সময় ৪০ ডিগ্রি কোণে শিকারের দিকে থাকে। "হুমম, মজার ব্যাপার তো বেশ!।” ধীরে ধীরে বলে ফারিন।
কিছুক্ষণ চিন্তামগ্ন হয় সে, চিন্তা করে চিলের পথটির কথা। তারপর হঠাৎ জোরে
জোরে বলে উঠে, "ইশশ, চিলেরা কী বোকা! অত কষ্ট করে বাঁকানো লম্বা পথে না
নেমে তারা তো ইচ্ছে করলে সোজাই নামতে পারে, মাথাটা কেবল সোজা পথের সাথে
একপাশে হেলিয়ে রাখলেই হয়।” মেয়ের চিন্তা চমৎকৃত করে আমাকে। সস্নেহে তার চুলগুলো নেড়ে দেই আমি, বলি, "সত্যি বলতে কী, বিজ্ঞানীদের কাছে বহু বছর ধরে ধাঁধাঁর মতোই ছিল, কেন পাখিগুলো এভাবে ঘাড় বাঁকিয়ে নামে না? আসলে পাখি যখন আকাশে ভাসে, তার শরীর ও ডানার উপর দিয়ে বয়ে যাওয়া বায়ু ধাক্কা দেয় তাকে, টেনে ধরে রাখতে চায় পেছনে। পাখির শরীর যদি টানটান সোজা থাকে, তাহলে দুপাশে বায়ুর চাপের ভারসাম্য থাকে, পাশ দিয়ে সাবলীলভাবে বায়ু বয়ে যায়। তখন শরীরের উপর বায়ুর টান সবচেয়ে কম হয়। কিন্তু একদিকে মাথা বাঁকিয়ে রাখলে বায়ু জোরালো ধাক্কা দেয় শরীরে, তখন দুই-তিন গুণ পর্যন্ত বেড়ে যেতে পারে বায়ুর টান। ফলে পাখির গতি কমে যাবে বেশ অনেকটা, পাখি ক্লান্ত হয়ে পড়বে তাড়াতাড়ি, আর দ্রুত নামার প্রশ্নই উঠে না তখন। বরং লম্বা বাঁকানো পথে সময় লাগে কম।” খুশিতে
হাততালি দিয়ে উঠে ফারিন, পাখিদের বুদ্ধিমত্তা বেশ আনন্দিত করে তাকে। "তোমাদের মনে আছে, ">বিস্ময়কর
গণিতবিদ মৌমাছি‘র ক্ষেত্রে আমরা দেখেছিলাম মধু আহরণের সময় মৌমাছির যে
গতিপথ, তা পোলার স্থানাঙ্কের মাধ্যমে প্রকাশ করা যায়?” এখন ধর, তোমাদেরকে একটি গাণিতিক
সম্পর্ক দেয়া হলো: y=2x। এরকম গাণিতিক সম্পর্ক বাস্তবজীবনে
প্রায়ই দেখবে তোমরা। যেমন মনে কর, একটি চকলেটের দাম দুই টাকা, তাহলে
অনেকগুলি চকলেটের দাম কত হবে? তালিকা তৈরিতে মগ্ন হয় দুই বোন, দেরাজের
ভেতর থেকে ছক কাগজের (Graph Paper) একটি পাতা বের করি আমি।” "তাহলে x ও y-এর জন্য চার জোড়া সংখ্যা পেলে তোমরা: (১, ২),
(৩, ৬), (৪, ৮) এবং (৭, ১৪)। এবার এই ছক কাগজে, যা কার্তেসীয় স্থানাঙ্কের
জন্য বানানো, বিন্দুগুলো বসাও। সবচেয়ে ছোট বর্গটির বাহুকে এক ধরে নাও।” "তার মানে এখানে
প্রথমে থেটা = ১, ২, ৩, …, ধরে ক্যালকুলেটরের সাহায্যে সম্পর্কটি থেকে r-এর
মান বের করে আমরা অনেকগুলি (r, থেটা) জোড়া পেতে পারি। তারপর প্রতি জোড়ার
জন্য প্রথমে চাঁদার সাহায্যে থেটার সমান কোণ এঁকে, কোণের লাইন থেকে উক্ত
জোড়ার r-এর মানটি বসিয়ে, আমরা একটি বিন্দু পাব। এভাবে অনেকগুলি বিন্দু
বসালেই চিলের সেই বাঁকানো গতিপথ পেয়ে যাব আমরা।” সারাকা বলল। বিন্দুর পর বিন্দু বানিয়ে যেতে থাকে দুই বোন, বেশ অনেক সময়
লাগে তাদের, কপালে ঘামের হালকা বিন্দু জমে উঠে। কিন্তু কাগজে ধীরে ধীরে যখন ফুটে উঠে সোনালি ডানার চিলের
গতিপথ, অপার্থিব স্বর্গীয় আলোয় উদ্ভাসিত হয় তাদের চোখ। এটি হচ্ছে সেই সময়
বিশ্ব জগতের মহান নিয়ন্তার ছড়িয়ে রাখা গণিত আর মেয়েদের হাসি যখন আবিষ্ট করে
আমাকে। আবার বিষণ্ণও হয় হৃদয় আমার, এত ক্ষুদ্র জীবন আমাদের! আশ্চর্য আর বিস্ময়ে আমি চেয়ে রবো
কিছু কাল অন্ধকার বিছানার কোলে, সন্ধ্যা হলে? মউমাছি চাক আজো বাঁধে নাকি
জামের নিবিড় ঘন ডালে, |
|
Total comments: 0 | |